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ABSTRACT 

Misclassification of exposure usually leads to biased estimates of exposure-response 

associations. This is particularly an issue in cases with multiple correlated exposures, 

where the direction of bias is uncertain. It is necessary to address this problem when 

considering associations with important public health implications such as the one 

between mortality and air pollution, since biased exposure effects can result in biased risk 

assessments. The National Morbidity and Mortality Air Pollution Study (NMMAPS) 

recently reported results from an assessment of multiple pollutants and daily-mortality in 

90 US cities. The independent associations of the selected pollutants with daily-mortality 

were assessed in two-pollutant models. Excess mortality was found to be associated with 

PM10, but not with other pollutants, in these two pollutant models. The extent of bias due 

to measurement error in these reported results is unclear. Schwartz and Coull recently 

proposed a method that deals with multiple exposures and, under certain conditions, is 

resistant to measurement error. We applied this method to re-analyze the data from 

NMMAPS. For PM10, we found similar results to those reported previously from 

NMMAPS (0.24 % increase in deaths per 10µg/m3 increase in PM10). In addition we 

report an important effect of carbon monoxide which had not been observed previously.  
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INTRODUCTION 

Growing evidence from published studies has shown increased all-cause and specific-

cause mortality from short-term exposures to air pollution (Fairley 1999; Katsouyanni et 

al. 1997; Pope at al. 1995; Schwartz 1993; Schwartz and Dockery 1992). An important 

piece of that evidence comes from the National Mortality and Morbidity Air Pollution 

Study (NMMAPS) conducted over 90 US cities (Dominici et al. 2000a; Samet et al. 

2000a; Samet et al. 2000b; Samet et al. 2000c). Recent updates of this study reported 

excess mortality in association with exposures to particulate matter of aerodynamic 

diameter less then or equal to 10 µm (PM10), while no independent associations with 

gaseous pollutants were observed (Dominici et al. 2003; Dominici et al. 2002). In these 

previous studies, effects of pollutants were examined using two-, and multiple pollutant 

models.  

 

From the public health perspective, when considering the evidence of a positive 

association between air pollution and mortality, it is important to confirm that such an 

effect is not biased due to exposure misclassification, and if so to correct for that bias.  

The magnitude and direction of uncertainty in the observed effects of air pollution due to 

exposure measurement error, has been argued by several investigators as a limitation in 

making causal inference for the link between air pollution and health outcomes (Lipfert 

and Wyzga 1997, 1999). In a single pollutant model, exposure measurement error, due to 

the non-differential misclassification, will underestimate the “true” effects of exposure-

response associations (bias towards the null). Because of this, risk assessments based on 

the findings of observational epidemiologic studies may underestimate the benefits of 
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reducing exposures. This is particularly true for air pollution studies, which, unlike cancer 

risk assessment, rely on maximum likelihood estimates of risk coefficients, and not upper 

confidence estimates.  

The situation is more complex in the case of multiple correlated pollutants. Here, 

the measurement error in one pollutant will tend to bias the risk coefficient of that 

pollutant toward the null. However, measurement error in the second pollutant will 

contribute some bias to the coefficient of the first pollutant. The direction of the bias will 

depend on the sign of the correlation between the pollutants. In rare cases, when the 

correlation is high between the two pollutants, and the measurement error in the second is 

large, this can result in an upward bias in the risk coefficient of the first pollutant. This 

may lead to an overestimation of exposure effects of the better measured pollutant (bias 

away from the null) (Schwartz 2000; Zeger et al. 2000). In the context of studies of air 

pollution, the upward bias has been cited as one reason for the positive associations 

between air pollutants and health outcomes (Lipfert and Wyuzga 1997, 1999). In recent 

analysis of this issue, Zeger et al. (2000) demonstrated that in the case of two pollutants 

measured with error, the correlation between the two pollutants, the variances of 

measurement errors of these two pollutants, and the correlation between the two errors 

would predict the magnitude and direction of bias. The study showed that even with 

hypothetically large differences in the four parameters, upward bias was unlikely (Zeger 

et al. 2000). Schwartz and Coull (2003) reported a similar finding in a simulation study, 

where under certain assumptions such as high correlation between the pollutants and their 

errors (>0.95), and/or large difference in the error variances, upward bias was not likely 

to occur.       
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Why is there measurement error in air pollution studies? A recent development in air 

pollution epidemiology, called time-series design, is based on series of air pollution 

concentrations and health outcomes (events) over a certain period of observation (which 

may be months or years). Through this, one can estimate the average number of events 

that occur with changes in air pollution concentrations. The unit of analysis is the day, 

and the outcome data are the counts of events (mortality, or other health outcomes). 

Exposure data are usually ambient concentrations of different air pollutants measured 

continuously (hourly or daily) from fixed-site monitoring stations. However, monitored 

ambient concentrations of air pollutants are not representative of personal exposures, 

which are important when evaluating the relation of exposure-health outcome at the 

individual level. Unfortunately, in time-series studies of air pollution there are no 

available calibration data (routinely measured series of personal exposure data) on which 

to base a measurement error correction. Dominici et al. (2000b) described a method to 

estimate a correction factor, using information on ambient and personal exposures in 

several cities in the US, addressing only one pollutant (PM10). However, the applicability 

of that approach to the population-based time-series is difficult, due to the fact that a 

more complex scenario of multiple air pollutants is generally present, and, only 

information on ambient exposures is usually available.  

 

In recent papers, Schwartz and Coull (Schwartz 2000; Schwartz and Coull 2003) 

developed an approach that uses hierarchical modeling to assess exposure-health outcome 

associations, which is resistant to exposure measurement error. The method is useful in 
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studies with multiple exposures, as in the case of air pollution time-series studies, and can 

provide bias-corrected estimates for the multiple exposures in the presence of 

measurement error. The present work aimed in two ways. First, to validate recent findings 

in air pollution epidemiology, we applied this approach to examine the independent 

effects of PM10 and several gaseous air pollutants on daily deaths, using recent data and 

results from NMMAPS. Second, we demonstrated the method with the intention to make 

it compelling to other researchers as a useful tool in assessing causal relationships.    

 

MATERIALS AND METHODS 

The NMMAPS study was an analysis of the association between air pollution and daily 

deaths in 90 US cities. The cities included essentially the entire urban US population 

living in counties with regular air pollution monitoring. Data on daily deaths in this study 

were obtained from records of the National Center for Health Statistics, and air 

monitoring data were obtained from the US Environmental Protection Agency, for the 

period from 1987 to 1994. This study conducted Poisson regressions, relating the daily 

death counts as a function of each day to air pollution concentrations on the same day, the 

previous day, and two days before the event, controlling for weather and season. Under 

such model, a Poisson process is assumed to describe the number of deaths per day, with 

events following a binomial process with low probability of occurrence. The model had 

the following form: log[E(Y)] = α+ ΣβjXj + ΣβkZk, where E(Y) was the expected daily 

death count, βj were the coefficients measuring the effects of j pollutants, and βk were the 

coefficients measuring the effects of k predictors (weather, season). The study looked at 

the effects on daily mortality from ambient concentrations of PM10, sulfur dioxide (SO2), 
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nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). Further details have 

been published elsewhere (Dominici et al. 2003; Samet et al. 2000b; Samet et al. 2000c). 

 

The hierarchical model  

The approach from Schwartz and Coull (2003) applied to this study is described as 

follows. If an outcome were linearly associated with two exposures, in our case two 

pollutants (X1 and X2), than we would have a model such as: 

       (1) 
220) XXE(Y 11 βββ ++=

where E(Y) is the expected daily mortality, and β1 and β2 are the unbiased effects of 

respectively X1 and X2. If X1 and X2 were correlated with each other than we could also 

fit a model like the following: 

   X2 = γ0 + γ1X1 + e   (2) 

If we now substitute X2 in equation (1) with equation (2), then we would obtain: 

  E(Y) = (β0 +β2γ0) + (β1 + γ1 β2)X1 (3) 

If we were to regress Y against X1 alone, then: 

       (4) 10)E 1( XY δδ +=

And by comparing (3) and (4) we would obtain:  

       (5) 11)( 12γββδ +=E

 

Hence, as equation (5) shows, by regressing the coefficient relating X1 to mortality (δ1) 

against the coefficient relating X2 to X1 (γ1), we can recover β2, the coefficient relating X2 

to mortality. If instead of substituting for X2 we had substituted for X1, then we would 

similarly have obtained an estimate of β1.  
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The advantage of this method is seen when we consider the impact of measurement error. 

If X1 and X2 are both measured with error, then the coefficients γ1 and δ1 in equations (2) 

and (4) are both biased; however that bias depends only on the variance of X1 and its 

measurement error, which are the same in both equations, and cancel out in equation (5). 

This results in the estimate of β2 in equation (5) being unbiased. The extension of the 

approach to models with additional predictors, and Poisson regressions, is provided in 

Schwartz and Coull (2003).  

 

Now, let us consider the application of this hierarchical analysis to an epidemiologic 

study. We applied the method to the NMMAPS study to estimate the unbiased 

independent effects of each of the five pollutants (PM10, SO2, NO2, CO, and O3) on daily 

mortality. One can think of the application of the hierarchical approach of Schwartz and 

Coull (2003) as a three step analysis. As an example, we are presenting each step using 

two pollutants (for example SO2 and PM10). If we were to estimate the “true” effects of 

each of the two pollutants on daily mortality, then β1 (in equation (1) above) would 

represent the unbiased effect of SO2, and β2 the unbiased effect of PM10. However, we are 

unable to estimate β1 and β2 directly, due to measurement error in each pollutant. The 

three stage method then comes into play.  

In the first stage, daily values of the various air pollutants, in each city, were 

regressed against each other to obtain regression slopes for each pollutant-pollutant 

combination (pollutant pairs), using least squares linear regression. In this step we 

applied equation (2) above, which in our example would take the form: PM10 = γ0 + γ1SO2 
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+ e. To enhance comparability with the original NMMAPS results, we obtained the daily 

air pollution data used by the NMMAPS researchers, so that their cleaning and averaging 

procedures would be reflected in our analysis. This data has been made publicly available 

as part of the Internet-based Health and Air Pollution Surveillance System (IHAPSS 

2003). 

In the second stage, single pollutant models were fit to the mortality data, in each 

city, for each of the pollutants being examined (equation (4) above). In such case, if 

estimating the effects of SO2 on daily mortality then: E(Y) = δ0 + δ1SO2. The NMMAPS 

study already provided results for the single pollutant models in each city, relating daily 

death counts to daily concentration of each pollutant (PM10, SO2, NO2, CO, and O3) on 

the day before (lag 1) the event, using Poisson regression modeling (Samet et al. 2000b; 

Dominici et al. 2003). Therefore, the slopes relating mortality and each of the air 

pollutants the day before death, by city, as provided by the NMMAPS, were the 

coefficients (δ1) of the second stage of the hierarchical approach.   

Finally, the slopes (δ1) obtained from the second stage were regressed against 

those (γ1) obtained from the first stage, across the 90 US cities (equation 5), using least 

squares linear regression. The slope of this final regression is, ideally, an unbiased 

estimate of β2, the effect of PM10 on daily mortality, controlling for the effect of SO2 and 

of measurement error.  

 

The method allows one to recover the independent effect of each pollutant, controlling 

for any other pollutant, using an approach that is in principle, unbiased by measurement 

error and which, in simulations, appears to be relatively unbiased under moderate 
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violations of the model assumptions (Schwartz and Coull 2003). Obviously, for this 

approach to work, the independent variable (γ1) in equation (5) must vary across the 

cities.  

 

In the application of the three stage analyses, the five pollutants were paired with each 

other. That is, for each pollutant, four unbiased independent estimates relating that 

pollutant to daily mortality were obtained, each estimate controlling for the effects of the 

other four pollutants. One limitation of the hierarchical modeling is loss in precision in 

these estimates, since the last regression (equation 5) has only 90 observations. This is 

reflected in the confidence limits of the estimates (Table 2). We could improve power in 

the effect of each pollutant, by averaging its four estimates, using the following formula:  

∑
∑

=

==
k

i ji

k

i jiji

w

w

1

1
j

β
β  

Where jβ  is the weighted average slope (meta-slope) for pollutant j, i.e. PM10, defined 

over k number slopes (obtained from third stage regressions), and jiβ is the unbiased 

slope of pollutant j (i.e. PM10) controlling for pollutant i (i.e. SO2), where i = 1 to k. 

Weights for the slopes were defined as follows:  

ji
ji v

w
1

=  

Where is the variance ofjiv jiβ .  The variance of jβ is calculated as: ∑=
=

k

i jij vv
1

 

 

RESULTS 
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The relationship between pollutant pairs differed across the 90 cities (Table 1). The 

heterogeneity in the pollutant-pollutant regression slopes (γ1) among all the cities, as 

shown in Table 1, assured sufficient variability in the independent variable of the third 

stage regression to proceed with the analysis. Power in a linear regression is increased by 

increasing the variability in the independent variable (γ1 in this case) and by reducing 

variability in the residuals. Table 1 indicates that at least the first condition is met. The 

range of variability in slopes relating PM10 to other pollutants was lower for traffic–

related pollutants (CO and NO2) than for SO2 or O3. This likely reflects traffic particles 

always being a substantial component of PM10, whereas the correlation with SO2 is more 

varied since it depends on the sulfur content of fuel. SO2 is poorly correlated with O3, 

resulting in a very small mean slope, and large range of variation. The range of variation 

in the slope relating NO2 to SO2 was smaller than for the other pollutants. It is possible 

this reflects the importance of diesel emissions for NO2 concentrations in urban areas. 

Diesel fuel has much higher sulfur content than gasoline, and this may contribute to a 

tighter spread of the association between the two pollutants across cities. 

 

The bias-corrected estimates from the third stage analysis are presented in Table 2. The 

results presented are percent increase in daily deaths for a 10µg/m3 increase in PM10, or a 

10 ppb increase in each of the gaseous air pollutants, except CO (100 ppb). For PM10, the 

percent increase in daily mortality ranged from 0.14 to 0.35 (controlling for other 

pollutants), with an overall estimate of 0.24 percent (95 percent confidence interval: 0.05 

percent, 0.42 percent). In contrast, we found small and non-significant associations of 

daily deaths with SO2, NO2, and O3.  
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Increased daily-mortality in association with CO was found in the present analyses. An 

overall relative excess daily-mortality of 0.06 percent was observed per increments of 

100 ppb of CO, estimated with fair precision (95 percent confidence interval: 0.02 

percent, 0.10 percent).     

 

DISCUSSION 

The validity of exposure-response associations in epidemiologic studies depends on the 

precision of exposure measurements (Dominici et al. 2000b; Schwartz and Coull 2003; 

Zeger et al. 2000). Environmental studies of air pollution often lack precisely measured 

exposures, which can lead to exposure misclassification and biased estimates of 

exposure-response associations (Dominici et al. 2000b; Schwartz and Coull 2003; Zeger 

et al. 2000). Usually, an exposure measured with error will bias the association towards 

the null. A more complicated problem occurs when two or more exposures are measured 

with error, and are correlated with each other. Zeger et al. (2000) reported that in such a 

case, the better measured exposure may, rarely, capture some of the effect of the other 

exposure, which could bias away from the null. In any event, the extent of downward bias 

in each pollutant effect is still dependent on the measurement error in the other exposure. 

Hence, environmental studies of multiple air pollutants may inherit bias in both directions 

and with varying degrees. Underestimating the public health consequences of air 

pollution exposure can result in suboptimal measures to reduce these health 

consequences, particularly when cost-benefit or cost–effectiveness analysis is used as part 

of the decision process. Uncertainties about upward bias in the effect estimates can 
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undermine the credibility of observed associations, raising questions about the 

appropriateness of proposed air quality standards. Hence reducing both potential errors 

can improve environmental health.  

 

Schwartz and Coull (2003) recently described a method that uses hierarchical modeling 

to deal with confounding and measurement error bias in epidemiological studies. Their 

approach yielded an exposure-response estimate which was unbiased under certain 

assumptions, and showed small downward biases when those assumptions were not met -

- for example when the measurement errors among the multiple exposures were 

correlated. Although not entirely eliminated, the bias effect in this case was much less 

than the one produced by the two-pollutant model under the same circumstances 

(Schwartz and Coull 2003).  

 

The present study applied the method of Schwartz and Coull (2003) to data and results 

from the National Morbidity and Mortality Study (NMMAPS) to estimate the 

independent effects of air pollutants on daily mortality. The application of this approach 

to the NMMAPS results was used in the case of two concurrent pollutants, both assumed 

to be measured with error. The method provided minimally biased independent effect 

estimates for each pollutant-daily mortality association. The price of this reduced bias 

was a reduction in precision. However, when we averaged over the results for each 

different pollutant, important associations appeared for PM10 and CO.  
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Recent results of NMMAPS had found positive association between PM10 and daily-

mortality for 90 US cities (Dominici et al. 2003; Samet et al. 2000b; Samet et al. 2000c). 

The relative increase in daily mortality was 0.21 percent (SE = 0.06 percent) per 10 

µg/m3 increase of PM10 concentration one day prior the event. The presence of other 

pollutants in the model did not change this effect (Dominici et al. 2003). Our estimate for 

this pollutant was slightly greater after reducing measurement error bias (0.24 percent 

increase in mortality; SE = 0.09 percent).  

 

The NMMAPS had reported no independent associations between daily mortality and 

concentration of other air pollutants one day prior the event, including SO2, NO2, CO, 

and O3 (Dominici et al. 2003). The findings for gaseous pollutants from that study were 

based on two and multiple pollutant models. For comparison with our results we report 

the estimates from this previous study for increments in concentration of 10 ppb. The 

estimates for SO2 from the two and multiple pollutant models from the NMMAPS ranged 

between 0.4 and 0.5 percent increase in daily mortality. NO2 showed relative increases in 

daily mortality from 0.3 to about 0.4 percent. Relative increase in daily mortality for O3 

varied between 0.08 to 0.2 percent. Percent increases from 0.02 to 0.06 in daily mortality 

were associated with increments of 100 ppb in CO concentrations. None of these reported 

effects were estimated precisely, which resulted to the summary of the evidence from this 

previous study of no association between any of the gaseous pollutants and daily 

mortality (Dominici et al. 2003). 
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We found the effects for SO2, controlling for other pollutants, to vary greatly, with an 

overall estimate of 0.1 percent increase in daily mortality. For NO2, we found essentially 

no effect on daily mortality (estimate = -0.004 percent). O3 effects in our study were 

found between two and three orders of magnitude smaller than the observed effects for 

the same pollutant from the NMMAPS. However, none of these estimates were precise, 

which made our summary finding for these pollutants qualitatively similar to the one 

reported from the NMMAPS study.  

 

Unlike in the NMMAPS finding, we observed an association between CO and daily 

mortality. The estimates controlling for other pollutants, ranged from -0.02 to 0.09 

percent, with the greater effects being estimated fairly precise. The pooled effect of CO 

showed a 0.06 percent increase in mortality with a tight confidence interval (95% CI: 

0.02 – 0.10).  

 

One explanation for the different finding for CO in our study, compared to that of 

NMMAPS, could be related to the high degree of measurement error in this pollutant. 

There is possibility that the spatial heterogeneity in ambient concentrations of CO is 

greater than that of any other air pollutant. This would result in a greater amount of 

measurement error when monitoring ambient concentrations of CO from a central 

monitoring site. Whether the greater effect seen using the hierarchical modeling approach 

reflects a true association with CO per se, or CO is a surrogate for traffic particles or 

some other component of vehicular exhaust (Sarnat et al. 2001), is not clear. 

Nevertheless, the results for CO indicate the potential usage of the approach and suggest 
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that attention should be focused on CO or on traffic pollution. The similar results of this 

study with those of NMMAPS for PM10 were reassuring. 

 

There are several limitations in the application of the Schwartz and Coull approach 

(2003) that must be acknowledged. First, because the third stage regression had only 90 

observations, the power of the method was reduced. The power depends in part on the R2 

of the third stage models. In our case, these were low (Table 2), forcing us to apply meta-

analysis as an ad hoc approach to improve power. In other applications, the R2 may be 

larger, and this approach may be unnecessary. We are currently developing a multivariate 

version of the approach that is less ad hoc in improving power, by using multiple 

predictors at the last stage regression.  

Second, we did not have seasonal specific regression coefficients relating air 

pollution to mortality in the NMMAPS. The use of this approach with season specific 

relationships offers increased power because of the increased number of risk coefficients 

by pollutant, and also because the relationship between many pollutants varies seasonally. 

We expect these to be available from NMMAPS in the future.  

Third, in the present analyses we assumed that the concentration-response relation 

between air pollution and daily deaths is linear. This question has been subject to a 

number of investigations using splines and smoothing in single city studies and 

combining splines or smooth curves in multi-city studies (Schwartz et al. 2002, Schwartz 

and Zanobetti 2000). At least for PM10, linear associations were seen in concentration 

ranges similar to those of the present study.  
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Finally, our model implies that each pollutant, as measured at a central site in each 

city, is a surrogate for exposure to the same pollutant. However, Sarnat and coworkers 

(2001) have proposed recently that ambient concentrations of gaseous air pollutants may 

be serving as surrogates not for exposure to those gases, but for exposure to particles or 

particles from particular sources. For example, in Baltimore, CO was a good surrogate for 

exposure to particles from traffic (Sarnat et al. 2001). This suggests that there must be 

caution in interpreting the present results for CO.  We think that personal exposure 

studies of intermediate outcomes may be necessary to resolve the question.  

  

Despite these limitations, the approach of Schwartz and Coull (2003) is useful to studies 

of air pollution and mortality. In our study, it provided evidence of a slightly greater 

effect of PM10 than that reported previously by NMMAPS, when controlling for 

measurement error in other pollutants, and suggested that greater attention be paid to CO 

and possibly traffic pollution. 
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Table 1. Mean and standard deviation (SD) of the distribution of pollutant-pollutant 
regression slopes (γ1) a, and their coefficients of variation (CV – in percent), across 90 US 
cities. 

Pollutant-Pollutant Regression Variables 
 

Pollutant-Pollutant Regression Slopes 
 

Dependent 
Pollutant 

Independent  
Pollutant 
 

 
Mean  b

 

 
SD 

 

 
CV (%) 

PM10 SO2 1.31 1.45 110.3 
 NO2 0.83 0.64 77.2 
 CO 0.01 0.01 62.7 
 O3 0.27 0.38 143.6 

 
SO2 PM10 0.09 0.08 87.9 
 NO2 0.22 0.20 91.6 
 CO 0.003 0.003 92.0 
 O3 -0.03 0.10 377.6 

 
NO2 SO2 2.64 5.09 192.8 
 PM10 -0.22 1.83 831.1 
 CO -0.01 0.08 1030.7 
 O3 0.19 2.03 1064.6 

 
CO SO2 61.58 74.64 121.2 
 NO2 34.19 19.39 56.7 
 PM10 13.73 9.26 67.4 
 O3 -9.58 9.47 98.8 

 
O3 SO2 136.66 535.82 392.1 
 NO2 24.76 95.82 387.0 
 CO -0.59 3.26 550.6 
 PM10 -63.99 292.61 457.2 

a The slopes were obtained from first stage regressions (equation (2)), paring each of the five pollutants 
with the other four (pollutant pairs), for each US city.  
b Mean and SD represent the mean and standard deviation of the distribution of first stage regression slopes 
across the 90 cities, for each pollutant pair.  
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Table 2. Percent increase in daily deaths associated with each pollutant, controlling for measurement error in other pollutants, based on 
data and results from the NMMAPS study, including the period between 1987 and 1994. 
   

Independent Effects of Pollutants on Daily Mortality a

Paired with pollutant b PM10 SO2 NO2 CO O3

 R2 c Slope d T e R2 Slope        T R2 Slope T R2 Slope T R2 Slope T
                
PM10            0.048 1.14 1.77 0.008 0.033 0.69 0.029 0.078 1.56 0.008 0.0003 0.77
SO2 0.047              0.28 1.73 <0.001 -0.004 0.06 0.154 0.086 3.25 0.012 -0.0004 0.83
NO2 0.012             0.16 0.83 0.007 -0.29 0.54   0.007 0.032 0.64 0.024 -0.0019 1.15
CO           0.006 0.14 0.69 0.030 0.65 1.33 0.001 -0.004 0.27 0.045 0.0011 1.87
O3 0.036            0.35 1.70 0.039 -0.76 1.52 0.007 -0.025 0.63 0.002 -0.018 0.34    
                
Meta-slope f                0.24 2.80 0.10 0.34 -0.004 0.27 0.062 3.16 0.0002 0.74

a Corrected slopes (effects) removing the effect of each pollutant shown in the first column.   
b The independent pollutant of first stage regression. 
c Adjusted R2 from regressions of third stage (see text for more detail).  
d Slope for PM10 presented as percent increase per 10µg/m3. Slopes for other pollutants are presented as percent increase per 10 ppb (100 ppb for CO). 
e t-statistic from regressions of the third stage. 
f Meta-slope of the four alternative estimates.  
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